Facile activation of hydrogen by unsaturated platinum-osmium carbonyl cluster complexes

Richard D. Adams *, Burjor Captain, Lei Zhu
Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, United States

Received 23 July 2007; received in revised form 3 August 2007; accepted 4 August 2007
Available online 11 August 2007

Abstract

The electronically unsaturated cluster complex $\mathrm{Os}_{3} \mathrm{Pt}_{2}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mathbf{1 0})$ was obtained from the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ with $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$. Three side products: $\mathrm{PtOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{2}^{t}\right) \mathrm{CMe}_{2} \mathrm{CH}_{2}(\mu-\mathrm{H})(\mathbf{1 3}), \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mathbf{1 4})$ and $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)\left(\mathrm{PBu}_{2}^{t}\right)$ $\mathrm{CMe}_{2} \mathrm{CH}_{2}(\mu-\mathrm{H})(\mathbf{1 5})$ were also obtained from this reaction. The three osmium atoms in $\mathbf{1 0}$ lie in the equatorial plane of a trigonal bipyramid. The platinum atoms occupy the apical positions. When heated, compound $\mathbf{1 0}$ was converted to $\mathbf{1 5}$ by metallation of one of the methyl groups of one of the PBu_{3}^{t} ligands at the platinum atom to which it is coordinated. The platinum atom then shifted to an edge of the Os_{3} triangle by cleaving one of its $\mathrm{Pt}-\mathrm{Os}$ bonds. Compound $\mathbf{1 3}$ also contains a metallated PBu_{3}^{t} ligand attached to the platinum atom of the tetrahedral PtOs_{3} cluster. Compound $\mathbf{1 0}$ reacts with hydrogen at $0{ }^{\circ} \mathrm{C}$ to yield the di- and tetra-hydrido compounds $\mathrm{Os}_{3} \mathrm{Pt}_{2}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{2}(\mathbf{1 1})$ and $\mathrm{Os}_{3} \mathrm{Pt}_{2}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{4}(\mathbf{1 2})$ with the hydrido ligands bridging Os- Pt and $\mathrm{Os}-\mathrm{Os}$ bonds. With each addition of hydrogen, one of the platinum atoms in the cluster was shifted to an edge of the Os_{3} triangle. When solutions of $\mathbf{1 2}$ at $25^{\circ} \mathrm{C}$ were purged with nitrogen, hydrogen was eliminated and the compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ were regenerated. The electronic structures of $\mathbf{1 0}$ and $\mathbf{1 1}$ were also investigated by Fenske-Hall molecular orbital theory. When compound $\mathbf{1 0}$ was exposed to hydrogen for 2.5 h , compound $\mathbf{1 2}$ was formed together with the new tetranuclear metal cluster complexes $\mathrm{PtOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{2}$ (16), $\mathrm{PtOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{4}(\mathbf{1 7})$ and $\mathrm{PtOs}_{3}(\mathrm{CO})_{8}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{4}(\mathbf{1 8})$. Compounds $\mathbf{1 6}-\mathbf{1 8}$ contain tetrahedrally shaped clusters of four metal atoms with bridging hydrido ligands. All new compounds were characterized structurally by single-crystal X-ray diffraction methods.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Bimetallic; Platinum; Osmium; Hydrogen activation; Unsaturation; Bulky ligands

1. Introduction

In recent studies, we have shown that the compounds $\mathrm{M}\left(\mathrm{PBu}_{3}^{t}\right)_{2}, \mathrm{M}=\mathrm{Pd}$ or Pt are excellent reagents for the addition of $\mathrm{M}\left(\mathrm{PBu}_{3}^{t}\right)$ groups to the metal-metal bonds of transition metal carbonyl cluster complexes [1-3]. In most cases the $\mathrm{M}\left(\mathrm{PBu}_{3}^{t}\right)$ group is added to just two metal atoms to form an edge-bridging group. For example, the reaction of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$ with an excess of $\operatorname{Pd}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ yielded the tris- $\mathrm{Pd}\left(\mathrm{PBu}_{3}^{t}\right)$ adduct, $\mathrm{Ru}_{3}(\mathrm{CO})_{12}\left[\mathrm{Pd}\left(\mathrm{PBu}_{3}^{t}\right)\right]_{3}(\mathbf{1})$ that contains a $\operatorname{Pd}\left(\mathrm{PBu}_{3}^{t}\right)$ group on each of the three $\mathrm{Ru}-\mathrm{Ru}$ bonds of the original molecule of $\mathrm{Ru}_{3}(\mathrm{CO})_{12}$, Eq. (1) [1].

[^0]

1

The reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ yielded a series of three adducts, $\mathrm{Os}_{3}(\mathrm{CO})_{12}\left[\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)\right]_{x}, \mathbf{2 - 4}, x=1-3$, containing one-three edge bridging $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ groups on the Os-Os bonds, Eq. (2) [2].

In some cases, the $\operatorname{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ group can be inserted into the metal-metal bond. For example, the reaction of $\mathrm{Re}_{3}(\mathrm{CO})_{12}(\mu-\mathrm{H})_{3}$ with $\operatorname{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ yielded the mono adduct $\mathrm{PtRe}_{3}(\mathrm{CO})_{12}\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{3}(5)$ formed by the insertion of a $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ group into one of the hydride-bridged $\mathrm{Re}-\mathrm{Re}$ bonds, Eq. (3) [4]. This reaction is partially reversible.

In the reaction of $\mathrm{Re}_{2}(\mathrm{CO})_{10}$ with $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$, three $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ groups were inserted into the $\mathrm{Re}-\mathrm{Re}$ bond to yield pentanuclear trigonal bipyramidal platinum-rhenium complex $\mathrm{Pt}_{3} \mathrm{Re}_{2}(\mathrm{CO})_{6}\left(\mathrm{PBu}_{3}^{t}\right)_{3}(6)$ that is unsaturated by the unusual amount of 10 electrons [5].

Interest in the use of hydrogen for energy-related purposes [6] has renewed interests in the interactions of hydrogen with metal-containing materials for storage and for the development of new catalysts for hydrogen transformations $[7,8]$. The activation of hydrogen by metal complexes has received considerable attention [9]. Recent studies have shown the electronically unsaturated polynuclear metal complexes are able to activate hydrogen, some times reversibly under mild conditions [5,10]. Interestingly, it was found that compound 6 readily adds 3 equiv. of hydrogen sequentially at room temperature to yield the series of hydrido platinum-rhenium complexes $\mathrm{Pt}_{3} \mathrm{Re}_{2}(\mathrm{CO})_{6}(\mathrm{P}-$ $\left.\mathrm{Bu}_{3}^{t}\right)_{3}(\mu-\mathrm{H})_{x}, 7-9, x=2,4,6$, that have bridging hydrido ligands on the Re-Pt bonds, Eq. (4) [5]. The addition of hydrogen to $\mathbf{6}$ adds electrons to the complex and reduces the electronic unsaturation in the cluster.

We have now found that the reaction of the lightly-stabilized triosmium complex $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ with $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ yields the new pentanuclear platinum-osmium complex $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}, \mathbf{1 0}$ by the addition of two $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ groups to the $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ and the loss of the two NCMe ligands. The two $\operatorname{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ groups in 10 have adopted triply-bridging positions on opposite sides of the Os_{3} triangle. Compound $\mathbf{1 0}$ is also electronically unsaturated by the amount of four electrons. Nevertheless, it still reacts with hydrogen under unusually mild conditions, namely $0^{\circ} \mathrm{C}$, to form a series of two new products $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{2} \quad(11)$, and $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{P}-$ $\left.\mathrm{Bu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{4}(12)$, containing two and four hydrido ligands, respectively. Interestingly, these hydrogen addition reactions can be reversed partially by purging their solutions with nitrogen at $25^{\circ} \mathrm{C}$. Herein, we report our studies of the synthesis and structural characterization of $\mathrm{Pt}_{2} \mathrm{Os}_{3}-$ $(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mathbf{1 0})$, its reactions with hydrogen, and the nature of the products that have been obtained from these reactions. A preliminary report of this work was published recently [11].

2. Experimental

2.1. General data

All the reactions were performed under a nitrogen atmosphere by using Schlenk techniques. Reagent grade solvent $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was dried by the standard procedures and was freshly distilled before use. Infrared spectra were recorded on an AVATAR 360 FT-IR spectrophotometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR were recorded on a Varian Mercury 400 spectrometer operating at 400 and 162 MHz , respectively. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectra were externally referenced against 85% ortho $-\mathrm{H}_{3} \mathrm{PO}_{4}$. Variable temperature ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a Varian Innova 500 spectrometer

7
8
operating at 500 MHz . Mass spectrometric measurements performed by direct exposure probe using electron impact ionization (EI) were made on a VG 70S instrument. Electrospray mass spectrometric measurements were obtained on a MicroMass Q-Tof spectrometer. Elemental analyses were performed by Desert Analytics (Tucson, AZ). $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ was prepared according to the previously reported procedure [12]. $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ and PBu_{3}^{t} were purchased from STREM, and were used without further purification. Product separations were performed by TLC in air on Analtech 0.25 mm silica gel $60 \AA$ F254 glass plates.

2.2. Reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ with $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$

A 45.0 mg amount of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}(0.048 \mathrm{mmol})$ was dissolved in $20 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ in a 50 mL three-neck flask. The solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath and a 58.0 mg amount of $\operatorname{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(0.096 \mathrm{mmol})$ added. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 4 h . The solvent was then removed in vacuo and the product was separated by TLC by using a $5 / 1$ hexane/methylene chloride solvent mixture to yield in order of elution: $4.2 \mathrm{mg}(7 \%)$ of grey $\mathrm{PtOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{2}^{t}\right) \mathrm{CMe}_{2} \mathrm{CH}_{2}(\mu-\mathrm{H}) \quad(13), 4.8 \mathrm{mg}$ (8%) of red $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mathbf{1 4}), 11 \mathrm{mg}(14 \%)$ of grey $\mathrm{Pt}_{2} \mathrm{Os}_{3}$ $(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)\left(\mathrm{PBu}_{2}^{t}\right) \mathrm{CMe}_{2} \mathrm{CH}_{2}(\mu-\mathrm{H})(\mathbf{1 5})$ and $16 \mathrm{mg}(20 \%)$ of green $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mathbf{1 0})$. Compound 15 was reported previously as a side product from the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ [13]. Spectral data for $\mathbf{1 0}$: IR $v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2049$ (w), 2016 (s), 1996 (s), 1950 (w, sh), 1792 (w). ${ }^{1} \mathrm{H}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=1.09$ (d, $54 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} \mathrm{~J}_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=124.3$ (s, 1P, $\left.{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=5447 \mathrm{~Hz}\right)$. Anal. Calc.: C, 24.80; $\mathrm{H}, 3.28$. Found: C, 24.77; H, 3.17\%. Spectral data for 13: IR $v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2077 (m), 2049 (vs), 2024 (s), 1997 (s), 1981 (m, sh), 1844 (w). ${ }^{1} \mathrm{H}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=1.63\left(\mathrm{~d}, 2 \mathrm{H}, \mathrm{CH}_{2},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}\right), 1.41(\mathrm{~d}, 18 \mathrm{H}$, $\left.{ }^{3} J_{\mathrm{P}-\mathrm{H}}=14 \mathrm{~Hz}\right), \quad 1.39\left(\mathrm{~d}, 6 \mathrm{H},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}\right),-9.43(\mathrm{~d}$, $1 \mathrm{H},{ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=13 \mathrm{~Hz}$). Mass spectrum: EI-MS showed the parent ion at $m / z=1248$. The observed isotope pattern is consistent with the $\mathrm{Os}_{3} \mathrm{Pt}$ metal composition. Spectral data for 14: IR $v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 2079 (w), 2072 (w), 2009 (s), 1983 (s), 1935 (m). ${ }^{1} \mathrm{H}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=1.55$ (s , $\mathrm{br} \sim 28 \mathrm{~Hz} \Delta v 1_{/ 2}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$): $\delta=76.7$. Mass Spectrum: $\mathrm{ES}^{+} / \mathrm{MS} m / z$ for M^{+}showed the parent ion at $m / z=1256$.

2.3. Preparation of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ (14)

A 15 mg of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}(0.016 \mathrm{mmol})$ was dissolved in 10 mL benzene in a 50 mL three-neck flask and an excess amount of PBu_{3}^{t} was added. The reaction was heated to reflux for 10 min and the solvent was then removed in vacuo. The product was separated by TLC by using a $5 / 1$ hexane/methylene chloride solvent mixture to yield $15 \mathrm{mg}(75 \%)$ of red $\mathbf{1 4}$.

2.4. Preparation of $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{2}$ (11)

A 9.5 mg amount of $\mathbf{1 0}(0.0058 \mathrm{mmol})$ was dissolved in $20 \mathrm{mLCH} \mathrm{Cl}_{2}$ in a 50 mL three-neck flask and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Hydrogen was then purged through the solution for 10 min . The solvent was removed in vacuo and the product was isolated by TLC by using a $5 / 1$ hexane/methylene chloride solvent mixture to yield an $8.8 \mathrm{mg}(93 \%)$ of 11. Spectral data for 11: IR $v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2067(\mathrm{~m}), 2042(\mathrm{~m}), 2010(\mathrm{~m})$, 1992 (s), 1944(w, br). ${ }^{1} \mathrm{H}$ NMR (in CDCl_{3}): $\delta=1.39$ $\left(\mathrm{d}, \quad 27 \mathrm{H}, \quad \mathrm{CH}_{3}, \quad{ }^{3} J_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}\right), \quad 1.34\left(\mathrm{~d}, \quad 27 \mathrm{H}, \quad \mathrm{CH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}\right),-10.49\left(\mathrm{~d}, 1 \mathrm{H}\right.$, hydride, ${ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=559 \mathrm{~Hz}$, $\left.{ }^{2} J_{\mathrm{P}-\mathrm{H}}=11 \mathrm{~Hz}\right),-10.71\left(\mathrm{~s}, 1 \mathrm{H}\right.$, hydride, ${ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=23 \mathrm{~Hz}$, ${ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=25 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (in CDCl_{3}): $\delta=117.6$ (s, $\left.1 \mathrm{P},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2787 \mathrm{~Hz}\right), 112.2\left(\mathrm{~s}, \quad 1 \mathrm{P},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=5579 \mathrm{~Hz}\right)$. Mass Spectrum: EI-MS showed the parent ion at $\mathrm{m} /$ $z=1648$. The observed isotope pattern is consistent with the metal composition $\mathrm{Os}_{3} \mathrm{Pt}_{2}$.

2.5. Preparation of $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-H)_{4}$ (12)

A 9.0 mg amount of $\mathbf{1 0}$ (0.0055 mmol) was dissolved in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 50 mL three-neck flask and the solution was cooled to $0^{\circ} \mathrm{C}$ with an ice bath. Hydrogen was then purged through the solution for 1 h . The solvent was removed in vacuo and the product was isolated by TLC by using $5 / 1$ hexane/methylene chloride solvent mixture to yield $5.7 \mathrm{mg}(63 \%)$ of 12. Spectral data for 12: IR $v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): 2062$ (m), 2027 (s), 2000 (w), 1960 (m). ${ }^{1} \mathrm{H}$ NMR (in CDCl_{3}): $\delta=1.52\left(\mathrm{~d}, 54 \mathrm{H}, \mathrm{CH}_{3}\right.$, $\left.{ }^{3} J_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}\right),-9.01\left(\mathrm{~m}, 2 \mathrm{H}\right.$, hydride, ${ }^{2} J_{\mathrm{H}-\mathrm{H}}=2.6 \mathrm{~Hz}$, $\left.{ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=421 \mathrm{~Hz}\right), \quad-16.65\left(\mathrm{~m}, \quad 2 \mathrm{H}\right.$, hydride, ${ }^{2} J_{\mathrm{H}-\mathrm{H}}=$ $2.6 \mathrm{~Hz}, \quad{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=23 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ (in CDCl_{3}): $\delta=92.0\left(\mathrm{~s}, 1 \mathrm{P},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2749 \mathrm{~Hz}\right)$. Anal. Calc.: C, 25.62; H, 3.73. Found: C, 25.96 ; H, 3.40%.

2.6. Conversion of $\mathbf{1 1}$ to $\mathbf{1 2}$

A 6.4 mg amount of $\mathbf{1 1}$ (0.0039 mmol) was dissolved in $15 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 50 mL three-neck flask and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Hydrogen was purged through the solution for 80 min . The solvent was removed in vacuo and the product was isolated by TLC by using 5/1 hexane/methylene chloride solvent mixture to yield a $4.4 \mathrm{mg}(69 \%)$ of $\mathbf{1 2}$.

2.7. Elimination of hydrogen from $\mathbf{1 2}$

(a) An 11 mg amount of $\mathbf{1 2}(0.0067 \mathrm{mmol})$ was dissolved in 15 mL benzene solvent in a 25 mL reaction flask in a water bath at $25^{\circ} \mathrm{C}$. Nitrogen was bubbled into the solution and a vacuum was subsequently applied every 30 min to remove the hydrogen that was released. After 10 h the solvent was removed in vacuo and the mixture was separated by TLC by using $6 / 1$ hexane/methylene chloride solvent mixture to yield $3.6 \mathrm{mg}(33 \%)$ amount of
$\mathbf{1 1 , 2 . 4 \mathrm { mg }}(22 \%)$ amount of $\mathbf{1 0} .3 .1 \mathrm{mg}(28 \%)$ amount of $\mathbf{1 2}$ was recovered.
(b) An 18 mg amount of $\mathbf{1 2}(0.011 \mathrm{mmol})$ was placed in a NMR tube and then dissolved in $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ solvent under nitrogen atmosphere. The sample was then placed in a water bath at $35^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR spectra were recorded after 1 h and 3 h . Resonances for compounds 10, 11 and hydrogen, $\delta=4.60$, formed and grew in intensity with time.

2.8. Conversion of $\mathbf{1 0}$ to $\mathbf{1 5}$

An 11 mg amount of $\mathbf{1 0}(0.0067 \mathrm{mmol})$ was dissolved in 25 mL hexane in a 50 mL three-neck flask and the solution was then heated to reflux for 30 min . The solvent was removed in vacuo and the products were isolated by TLC by using $6 / 1$ hexane/methylene chloride solvent mixture to yield a $5.5 \mathrm{mg}(50 \%)$ of $\mathbf{1 5}$.
2.9. Preparation of $\mathrm{PtOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{2}$ (16), $\mathrm{PtOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{4}$ (17) and $\mathrm{PtOs}_{3}(\mathrm{CO})_{8}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{4}$ (18)

A 11 mg amount of $\mathbf{1 0}(0.0067 \mathrm{mmol})$ was dissolved in $20 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 50 mL three-neck flask and the solution was cooled to $0^{\circ} \mathrm{C}$ in an ice bath. Hydrogen was then purged through the solution for 2.5 h . The solvent was removed in vacuo and the products were separated by TLC by using $5 / 1$ hexane/methylene chloride solvent mixture to yield in order of elution: 0.5 mg amount (6%) of $\mathbf{1 7}$, $0.8 \mathrm{mg}(8 \%)$ of $\mathbf{1 8}, 5.2 \mathrm{mg}(47 \%)$ of $\mathbf{1 2}$ and a 1.5 mg amount (19\%) of 16. Spectral data for 16: IR $v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: 2078 (w), 2047 (s), 2016 (m), 1989 (m), 1975 (w, sh), 1954 (w, sh), 1942 (w, sh). ${ }^{1} \mathrm{H}$ NMR (in CDCl_{3}): $\delta=1.38$ (d, $\left.27 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}\right),-7.24(\mathrm{~s}, 1 \mathrm{H}$, hydride), -8.14 (d, 1 H , hydride, ${ }^{1} J_{\mathrm{P}-\mathrm{H}}=573 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ (in $\left.\mathrm{CDCl}_{3}\right): \delta=116.6\left(\mathrm{~s}, 1 \mathrm{P},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2613 \mathrm{~Hz}\right)$. Mass spectrum: EI-MS showed the parent ion at $m / z=1250$ with ions $1250-28 x, x=1-10$ corresponding to the loss of each of 10 CO ligands. The observed isotope distribution pattern is consistent with the $\mathrm{Os}_{3} \mathrm{Pt}$ metal composition. Spectral data for 17: IR $v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right.$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $2090(\mathrm{w})$, 2066 (s), 2041 (s), 2001 (m), 1970 (w, sh). ${ }^{1} \mathrm{H}$ NMR (in $\left.\mathrm{CDCl}_{3}\right): \delta=1.37\left(\mathrm{~d}, 27 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}\right),-10.72$ (d, 2 H , hydride, $\left.{ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=759 \mathrm{~Hz}\right),-16.62(\mathrm{~d}, 2 \mathrm{H}$, hydride, ${ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=14 \mathrm{~Hz}, \quad{ }^{3} J_{\mathrm{P}-\mathrm{H}}=1.5 \mathrm{~Hz}$). ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \quad \mathrm{NMR}$ (in $\left.\mathrm{CDCl}_{3}\right): \delta=122.8\left(\mathrm{~s}, 1 \mathrm{P},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=3206 \mathrm{~Hz}\right)$. Mass Spectrum: EI-MS showed the parent ion at $m / z 1224$ with ions $1224-28 x, x=1-9$ corresponding to the loss of each of nine CO ligands. Spectral data for 18: IR $v_{\mathrm{CO}}\left(\mathrm{cm}^{-1}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$): 2063 (m), 2029 (s), 2005 (m), 1981 (m), 1959 (m), 1938 (w, sh). ${ }^{1} \mathrm{H}$ NMR (in CDCl_{3}): $\delta=1.48$ (d, $\left.27 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=13 \mathrm{~Hz}\right), 1.40\left(\mathrm{~d}, 27 \mathrm{H}, \mathrm{CH}_{3},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=\right.$ $13 \mathrm{~Hz}),-10.18\left(\mathrm{dd}, 2 \mathrm{H}\right.$, hydride, ${ }^{2} J_{\mathrm{P}-\mathrm{H}}=9.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=$ $\left.1.5 \mathrm{~Hz}, \quad{ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=755 \mathrm{~Hz}\right), \quad-13.96 \quad(\mathrm{~d}, \quad 2 \mathrm{H}$, hydride, $\left.{ }^{2} J_{\mathrm{P}-\mathrm{H}}=6.4 \mathrm{~Hz},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=13 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (in CDCl_{3}): $\delta=81.5\left(\mathrm{~d}, 1 \mathrm{P},{ }^{3} J_{\mathrm{P}-\mathrm{P}}=30 \mathrm{~Hz}\right), 124.2\left(\mathrm{~d}, 1 \mathrm{P},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=\right.$
$3370 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{P}}=30 \mathrm{~Hz}$). Mass Spectrum: EI-MS showed the ion at $m / z 1396, \mathrm{M}^{+}-2 \mathrm{H}$.

2.10. Conversion of $\mathbf{1 6}$ to $\mathbf{1 7}$

A 6.2 mg amount of $\mathbf{1 6}(0.0050 \mathrm{mmol})$ was dissolved in $15 \mathrm{~mL} \mathrm{CH} \mathrm{Cl}_{2}$ in a 50 mL three-neck flask and hydrogen was purged for 1 h at room temperature. The solvent was removed in vacuo and the products were separated by TLC by using $5 / 1$ hexane/methylene chloride solvent mixture to yield a 3.0 mg amount (48%) of 17 .

2.11. Conversion of $\mathbf{1 7}$ to $\mathbf{1 8}$

A 6.5 mg amount of $\mathbf{1 7}(0.0053 \mathrm{mmol})$ was dissolved in $15 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ in a 50 mL three-neck flask. A $6.6 \mu \mathrm{~L}$ (0.027 mmol) amount of PBu_{3}^{t} was added to the solution and the solution was stirred at room temperature for 1 h . The solvent was removed in vacuo and the products were isolated by TLC by using $6 / 1$ hexane/methylene chloride solvent mixture to yield a $3.1 \mathrm{mg}(41 \%)$ of $\mathbf{1 8}$.

2.12. Crystallographic analysis

Dark single crystals of $\mathbf{1 0}$, red single crystals of $\mathbf{1 4}$, dark single crystals of $\mathbf{1 3}$, and dark single crystals of $\mathbf{1 8}$ suitable for diffraction analysis were grown by slow evaporation of solvent from a benzene/octane solution at $8^{\circ} \mathrm{C}$. Thin green plates of $\mathbf{1 1}$ suitable for diffraction analysis were grown by evaporation of solvent from a methylene chloride/hexane solution at room temperature. Golden yellow single crystals of $\mathbf{1 2}$ suitable for diffraction analysis were grown by slow evaporation of solvent from an ether solution at $-25^{\circ} \mathrm{C}$. Dark single crystals of $\mathbf{1 6}$ and $\mathbf{1 7}$ suitable for diffraction analysis were grown by evaporation of solvent from a methylene chloride/hexane solution at $-25^{\circ} \mathrm{C}$. Each data crystal was glued onto the end of thin glass fiber. Xray intensity data were measured using a Bruker SMART APEX CCD-based diffractometer using Mo $\mathrm{K} \alpha$ radiation $(\lambda=0.71073 \AA)$. The raw data frames were integrated with the sAINT+ program by using a narrow-frame integration algorithm [14]. Corrections for Lorentz and polarization effects were also applied by saint. An empirical absorption correction based on the multiple measurement of equivalent reflections was applied by using the program sadabs. All structures were solved by a combination of direct methods and difference Fourier syntheses, and refined by fullmatrix least-squares on F^{2}, by using the shelxtl software package [15]. All non-hydrogen atoms were refined with anisotropic displacement parameters. Unless indicated otherwise, all hydrogen atoms were placed in geometrically idealized positions and included as standard riding atoms. Crystal data, data collection parameters, and results of the analyses for compounds are listed in Tables 1 and 2.

Compounds 10, 14, and $\mathbf{1 7}$ all crystallized in the orthorhombic crystal system. For $\mathbf{1 0}$ the systematic absences were consistent with either of the space group Pnn2 or

Table 1
Crystallographic data for compounds 10-13

Compound	10	11	12	13
Empirical formula	$\mathrm{Pt}_{2} \mathrm{Os}_{3} \mathrm{P}_{2} \mathrm{O}_{10} \mathrm{C}_{34} \mathrm{H}_{54} \cdot \mathrm{C}_{6} \mathrm{H}_{6}$	$\mathrm{Pt}_{2} \mathrm{Os}_{3} \mathrm{P}_{2} \mathrm{O}_{10} \mathrm{C}_{34} \mathrm{H}_{56}$	$\begin{aligned} & \mathrm{Pt}_{2} \mathrm{Os}_{3} \mathrm{P}_{2} \mathrm{O}_{10} \mathrm{C}_{34} \mathrm{H}_{58} \cdot 1 / 2 \\ & \left(\mathrm{CH}_{3} \mathrm{CH}_{2}\right)_{2} \mathrm{O} \end{aligned}$	$\begin{aligned} & \mathrm{PtOs}_{3} \mathrm{PO}_{10} \mathrm{C}_{22} \mathrm{H}_{27} \cdot 1 / 2 \\ & \mathrm{C}_{6} \mathrm{H}_{6} \end{aligned}$
Formula weight	1723.60	1647.51	1686.58	1287.15
Crystal system	Orthorhombic	Monoclinic	Monoclinic	Triclinic
Lattice parameters				
$a(\mathrm{~A})$	12.8093(4)	27.9635(10)	16.7485(8)	9.1174(15)
$b(\AA)$	20.1356(6)	20.7892(7)	15.9787(8)	12.723(2)
$c(\AA)$	9.2275(3)	15.4264(6)	18.2023(9)	15.303(3)
$\alpha\left({ }^{\circ}\right)$	90	90	90	70.253
$\beta\left({ }^{\circ}\right)$	90	105.650(1)	103.787(1)	82.942
$\gamma\left({ }^{\circ}\right)$	90	90	90	72.112
$V\left(\AA^{3}\right)$	2379.98(13)	8635.5(5)	4730.9(4)	1589.6(5)
Space group	Pnn2 (\#34)	$P 2_{1} / n(\# 14)$	$P 2_{1} / c(\# 14)$	P1 ${ }^{\text {(\#2) }}$
Z value	2	8	4	2
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.405	2.534	2.368	2.689
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) $\left(\mathrm{mm}^{-1}\right)$	13.953	15.376	14.037	16.437
Temperature (K)	294(2)	100(2)	150(2)	294(2)
$2 \Theta_{\text {max }}\left({ }^{\circ}\right)$	56.6	56.0	56.6	56.5
No. of observed ($I>2 \sigma(I)$)	5272	11839	11063	5884
No. of parameters	252	916	504	358
Goodness-of-fit ${ }^{\text {a }}$	1.033	1.015	1.118	1.007
Maximum shift in cycle	0.001	0.002	0.003	0.001
Residuals ${ }^{\text {a }}$: R_{1}; w R_{2}	0.0304; 0.0605	0.0394; 0.0854	0.0229; 0.0573	0.0489; 0.1066
Absorption correction, Maximum/ minimum	1.000/0.560	1.000/0.509	1.000/0.532	1.000/0.264
Largest peak in final difference map $\left(\mathrm{e}^{-} / \AA^{3}\right)$	1.486	2.807	2.600	2.860
${ }^{\text {a }} R=\Sigma_{h k l}\left(\| \| F_{\text {obs }}\left\|-\left\|F_{\text {calc }}\right\|\right\|\right) / \Sigma_{h k l} \mid F_{\text {obs }}$	$=\left[\Sigma_{h k l} w\left(\left\|\mathrm{~F}_{\mathrm{obs}}\right\|-\left\|F_{\text {calc }}\right\|\right)^{2} /\right.$	$\left.F_{\mathrm{obs}}{ }^{2}\right]^{1 / 2}, w=1 / \sigma^{2}\left(F^{\prime}\right.$	$\mathrm{GOF}=\left[\Sigma_{h k l} w\left(\left\|F_{\text {obs }}\right\|-\mid F\right.\right.$	$\left.1\left(n_{\text {data }}-n_{\text {vari }}\right)\right]^{1 / 2}$

Table 2
Crystallographic data for compounds 14 and 16-18

Compound	14	16	17	18
Empirical formula	$\mathrm{Os}_{3} \mathrm{P}_{2} \mathrm{O}_{10} \mathrm{C}_{34} \mathrm{H}_{54}$	$\mathrm{PtOs}_{3} \mathrm{PO}_{10} \mathrm{C}_{22} \mathrm{H}_{29}$	$\mathrm{PtOs}_{3} \mathrm{PO}_{9} \mathrm{C}_{21} \mathrm{H}_{31}$	$\mathrm{PtOs}_{3} \mathrm{P}_{2} \mathrm{O}_{8} \mathrm{C}_{32} \mathrm{H}_{54} \cdot 1 / 2 \mathrm{C}_{6} \mathrm{H}_{6}$
Formula weight	1255.31	1250.11	1224.12	1433.44
Crystal system	Orthorhombic	Triclinic	Orthorhombic	Monoclinic
Lattice parameters				
$a(\AA)$	14.0665(4)	8.9873(3)	13.5462(6)	14.8675(6)
$b\left(\right.$ ® ${ }_{\text {® }}$)	$15.9725(5)$	$11.3267(4)$	16.9660(7)	16.5165(7)
$c(\AA)$	18.2569(6)	15.7682(6)	12.7251(6)	17.5830(7)
$\alpha\left({ }^{\circ}\right)$	90	109.806(1)	90	90
$\beta\left({ }^{\circ}\right)$	90	90.016(1)	90	90.179(1)
$\gamma\left({ }^{\circ}\right)$	90	96.146(1)	90	90
$V\left(\AA^{3}\right)$	4101.9(2)	1500.37(9)	2924.5(2)	4317.6(3)
Space group	$P 22_{1} 2_{1}(\# 19)$	P1 (\#2)	Pna21 (\#33)	$P 2_{1} / n(\# 14)$
Z value	4	2	4	4
$\rho_{\text {calc }}\left(\mathrm{g} / \mathrm{cm}^{3}\right)$	2.033	2.767	2.780	2.205
$\mu\left(\mathrm{Mo} \mathrm{K} \alpha\right.$) (mm^{-1})	9.398	17.410	17.858	12.147
Temperature (K)	294(2)	294(2)	100(2)	100(2)
$2 \Theta_{\text {max }}\left({ }^{\circ}\right)$	52.0	56.6	56.6	56.68
No. of observed ($I>2 \sigma(I)$)	6981	6422	6832	9823
No. of parameters	458	351	341	485
Goodness of fit ${ }^{\text {a }}$	1.059	1.066	1.083	1.133
Maximum shift in cycle	0.003	0.001	0.008	0.014
Residuals ${ }^{\text {a }}$: R_{1}; w R_{2}	0.0410; 0.0936	0.0245; 0.0611	0.0225; 0.0562	0.0301; 0.0680
Absorption correction, Maximum/minimum	1.000/0.717	1.000/0.458	1.000/0.485	1.000/0.532
Largest peak in final difference map ($\mathrm{e}^{-} / \AA^{\text {A }}$)	2.137	1.477	0.806	2.646
${ }^{\text {a }} R=\Sigma_{h k l}\left(\| \| F_{\text {obs }}\left\|-\left\|F_{\text {calc }}\right\|\right\|\right) / \Sigma_{h k l}\left\|F_{\text {obs }}\right\| ; R_{w}=$	$v\left(\left\|F_{\text {obs }}\right\|-\left\|F_{\text {calc }}\right\|\right)^{2} /$	$\left.F_{\text {obs }}{ }^{2}\right]^{1 / 2}, w=1 / \sigma^{2}(F$	$\mathrm{GOF}=\left[\Sigma_{h k l} w\left(\mid F_{\mathrm{o}}\right.\right.$	$\left.\left.F_{\text {calc }} \mid\right)^{2} /\left(n_{\text {data }}-n_{\text {vari }}\right)\right]^{1 / 2}$.

Pnnm. The structure could only be solved in the former space group. With $Z=2$, the molecule lies on a 2 -fold rotation axis and only one-half of the molecule is present in the
asymmetric unit. There is also half a molecule of benzene from the crystallization solvent that co-crystallized with the complex that also lies on a 2 -fold rotational axis. The
solvent molecule was included in the analysis and satisfactorily refined with isotropic thermal parameters. For compound 14 the space group $P 2_{1} 2_{1} 2_{1}$ was identified on the basis of the systematic absences in the intensity data. The carbon atom C 42 on the t-butyl group on atom $\mathrm{P}(2)$ was slightly disordered and was refined with one geometric restraint. The Flack parameter for this analysis was 0.00 . For compound $\mathbf{1 7}$ the systematic absences were consistent with either of the space group Pna2 1_{1} or Pnma. The structure could only be solved satisfactorily in the former space group. The four hydrido ligands were located, however H1 and H 4 were refined with a fixed isotropic thermal parameter, while H2 and H3 were refined successfully with isotropic thermal parameters.

Compounds 11, $\mathbf{1 2}$ and $\mathbf{1 8}$ crystallized in the monoclinic crystal system. For compound $\mathbf{1 1}$ the systematic absences in the intensity data uniquely identified the space group $P 2_{1} / n$. With $Z=8$ there are two independent molecules in the asymmetric unit. Despite many attempts, the crystals of $\mathbf{1 1}$ were obtained only as very thin plates. Carbon atoms $C(14), C(36)$ and $C(83)$ were refined with isotropic thermal parameters. The hydrido ligands were located crystallographically but were refined by using geometric restraints. For compound $\mathbf{1 2}$ the systematic absences in the intensity data uniquely identified the space group as $P 2_{1} / c$. The hydrido ligands were located and refined with isotropic thermal parameter. The molecule co-crystallized with half a molecule of diethyl ether from the crystallization solvent. The solvent molecule was refined using one geometric restraint with isotropic thermal parameters. For compound 18 the space group $P 2_{1} / n$ was identified uniquely by the pattern of systematic absences in the data. The tetrahedral $\mathrm{Os}_{3} \mathrm{Pt}$ core is disordered over two orientations which were refined in the ratio $85 / 15$. The disorder components were located from the difference map. The hydrido ligands were not located and were ignored in this structural analysis. The complex co-crystallized with half a molecule of benzene from the crystallization solvent lying about a center of symmetry. The solvent molecule was included and refined with isotropic thermal parameters.

Compounds $\mathbf{1 3}$ and $\mathbf{1 6}$ both crystallized in the triclinic crystal system. The space group $P \overline{1}$ was assumed and confirmed by the successful solution and refinement of the structures in both cases. Compound $\mathbf{1 3}$ co-crystallized with half a molecule of benzene from the crystallization solvent in the asymmetric crystal unit. The solvent molecule was included in the analysis and satisfactorily refined with isotropic thermal parameters. The hydrido ligand was located and refined on its positional parameters with a fixed isotropic thermal parameter. For compound $\mathbf{1 6}$ the hydrido ligands were located and refined successfully with isotropic thermal parameters.

2.13. Molecular orbital calculations

Single point molecular orbital calculations on compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ were performed on the molecular struc-
ture as derived from the single crystal X-ray diffraction analysis. PH_{3} was used in place of PBu_{3}^{t} in these calculations. All molecular orbital calculations reported herein were performed by using the Fenske-Hall method [16]. The calculations were performed utilizing a graphical user interface developed [17] to build inputs and view outputs from stand-alone Fenkse-Hall (version 5.2) and moplot2 binary executables [18]. Contracted double- ζ basis sets were used for the Os 5d, Pt 5d, P 3p, C 2 p, O 2 p and H 1 s atomic orbitals. The Fenske-Hall scheme is a nonempirical approximate method that is capable of calculating molecular orbitals for very large transition metal systems and has built-in fragment analysis routines that allow one to assemble transition metal cluster structures from the ligand-containing fragments.

3. Results and discussion

The pentanuclear complex $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mathbf{1 0})$ was the principal product (20% yield) obtained from the reaction of $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ with $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ at $0{ }^{\circ} \mathrm{C}$. Three other products: $\mathrm{PtOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{2}^{t}\right) \mathrm{CMe}_{2} \mathrm{CH}_{2}(\mu-\mathrm{H})$ (13) and $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ (14) and $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{P}$ $\left.\mathrm{Bu}_{3}^{t}\right)\left(\mathrm{PBu}_{2}^{t}\right) \mathrm{CMe}_{2} \mathrm{CH}_{2}(\mu-\mathrm{H})(15)$ were obtained in lower yields of $7 \%, 8 \%$, and 14%, respectively. Compounds $\mathbf{1 0}$, 13 and 14 are new and were characterized by a combination of IR, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR, and a single-crystal X-ray diffraction analyses. Compound $\mathbf{1 5}$ was obtained previously from the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$ with $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ [2].

An ORTEP diagram of the molecular structure of $\mathbf{1 0}$ is shown in Fig. 1. Compound $\mathbf{1 0}$ consists of a trigonal bipy-

Fig. 1. ORTEP diagram of the molecular structure of $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{P}-$ $\left.\mathrm{Bu}_{3}^{t}\right)_{2}(\mathbf{1 0})$, showing 30% thermal probability thermal ellipsoids. Selected bond distances (in \AA) are as follows: $\operatorname{Pt}(1)-\mathrm{P}(1)=2.3426(18), \operatorname{Pt}(1)-$ $\mathrm{Os}(1)=2.7923(3), \quad \operatorname{Pt}(1)-\mathrm{Os}(1)^{*}=2.8104(4), \quad \operatorname{Pt}(1)-\mathrm{Os}(2)=2.8840(4)$, $\mathrm{Os}(1)-\mathrm{Os}(2)=2.8840(4), \mathrm{Os}(1)-\mathrm{Pt}(1)^{*}=2.8104(4), \mathrm{Os}(1)-\mathrm{Os}(1)^{*}=2.8590(6)$, $\mathrm{Os}(2)-\mathrm{Os}(1)^{*}=2.7024(5), \mathrm{Os}(1)-\mathrm{Pt}(1)^{*}=2.8839(4)$.

Scheme 1.
ramidal cluster of five metal atoms. The three osmium atoms define the equatorial plane of the trigonal bipyramid. The platinum atoms occupy the apical positions. The molecule lies on a crystallographic twofold rotational axis that passes through the atom $\operatorname{Os}(2)$. Each platinum atom contains one PBu_{3}^{t} ligand. The complex has 10 CO ligands. Two are bridging ligands across $\mathrm{Os}-\mathrm{Os}$ bonds. There is one bridging CO ligand to each platinum atom and the remainder are terminal ligands on the osmium atoms. The CO bridged $\mathrm{Pt}-\mathrm{Os}$ bond distances, $\mathrm{Pt}(1)-$ $\operatorname{Os}(1)=2.7923(3) \AA$, are significantly shorter than the unbridged ones, $\mathrm{Pt}(1)-\mathrm{Os}(1)^{*}=2.8104(4) \AA, \mathrm{Pt}(1)-\mathrm{Os}(2)$ $=2.8840(3) \AA$. The long length of the $\operatorname{Pt}(1)-\mathrm{Os}(2)$ bond may be due to steric effects, as $\operatorname{Os}(2)$ is bonded to four CO ligands (including the bridging COs) and $\mathrm{Os}(1)$ has only three.

The total valence electron count for $\mathbf{1 0}$ is 68 electrons, which is 4 electrons less than the number expected for a trigonal bipyramidal cluster of five metal atoms according to the polyhedral skeletal electron pair theory [19]. This can be explained, however, if the two platinum atoms are assumed to have 16 -electron configurations. Compound 10 can be converted to $\mathbf{1 5}$ in 50% yield simply by heating to $68^{\circ} \mathrm{C}$. Scheme 1 shows the products of this reaction and their relationships.

Compound 13 contains four metal atoms, one of platinum and three of osmium, arranged in a tetrahedral-type structure. An ORTEP diagram of the molecular structure of $\mathbf{1 3}$ is shown in Fig. 2. The PBu_{3}^{t} ligand is coordinated to the platinum atom and it is metallated on one of its methyl groups to form a four-membered ring with the platinum atom, $\operatorname{Pt}(1)-\mathrm{P}(1)-\mathrm{C}(49)-\mathrm{C}(50), \quad \operatorname{Pt}(1)-\mathrm{C}(50)=$ $2.085(10) \AA$. A similar metallated PBu_{3}^{t} is found in the five metal coproduct $\mathbf{1 5}$ [2]. Compound $\mathbf{1 3}$ contains one hydrido ligand, $\mathrm{H}(1)$, that was derived from the metallated
methyl group. The hydrido ligand was located and refined crystallographically, and it bridges the $\mathrm{Os}(2)-\mathrm{Os}(3)$ bond, which is, as expected, longer than other Os-Os bonds: $\mathrm{Os}(2)-\mathrm{Os}(3)=2.7648(6) \AA, \quad \mathrm{Os}(1)-\mathrm{Os}(2)=2.7542(7) \AA$, $\mathrm{Os}(1)-\mathrm{Os}(3)=2.7546(6) \AA$ [20]. Compound $\mathbf{8}$ contains a total of 58 cluster valence electrons which is two less than

Fig. 2. An ORTEP diagram of the molecular structure of $\mathrm{PtOs}_{3}(\mathrm{CO})_{10}(\mathrm{P}-$ $\left.\mathrm{Bu}_{2}^{t}\right) \mathrm{CMe}_{2} \mathrm{CH}_{2}(\mu-\mathrm{H})(13)$, showing 30% probability thermal ellipsoids. Selected bond distances (in \AA) are as follows: $\mathrm{Pt}(1)-\mathrm{P}(1)=2.354(3), \mathrm{Pt}(1)-$ $\mathrm{C}(50)=2.085(10), \quad \mathrm{Pt}(1)-\mathrm{Os}(1)=2.7723(6), \quad \mathrm{Pt}(1)-\mathrm{Os}(2)=2.7763(6)$, $\mathrm{Pt}(1)-\mathrm{Os}(3)=2.7573(7), \mathrm{Os}(1)-\mathrm{Os}(2)=2.7542(7), \mathrm{Os}(1)-\mathrm{Os}(3)=2.7546(6)$, $\mathrm{Os}(2)-\mathrm{Os}(3)=2.7648(6)$.
the expected 60 electrons in which all metal atoms have 18 electron configurations. The 58 -electron count can be explained by assuming that the platinum atom has a 16 electron configuration.

Compound $\mathbf{1 4}$ is a bis- PBu_{3}^{t} derivative of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$. It was characterized by IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR spectroscopy, mass spectrum and by a single-crystal X-ray diffraction analysis. An ORTEP diagram of the molecular structure is shown in Fig. 3. The molecule contains two PBu_{3}^{t} ligands that lie in the plane of the Os_{3} triangle. Both PBu_{3}^{t} ligands are positioned trans to the same metal-metal bond, $\mathrm{Os}(1)-\mathrm{Os}(2)$, which is significantly longer than the other two Os-Os bonds, $\operatorname{Os}(1)-\mathrm{Os}(2)=2.9732(5) \AA$, $\operatorname{Os}(1)-\mathrm{Os}(3)=2.9361(6) \AA, \quad \operatorname{Os}(2)-\mathrm{Os}(3)=2.9325(6) \AA$. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 4}$ exhibits a single very broad resonance at $1.55 \mathrm{ppm}, \Delta v_{1 / 2}=\sim 28 \mathrm{~Hz}$. The broadness of the ${ }^{1} \mathrm{H}$ resonance may be due to hindered rotations about the $\mathrm{P}-\mathrm{C}$ bonds of the t-butyl phosphine ligands [21]. The ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR spectrum shows a single sharp resonance at 76.7 ppm . Phosphine-substituted triosmium clusters have been fairly well studied [22]. Of the various possible isomers, in the structure of $\mathbf{1 4}$ and most other structurally characterized bis-phosphine derivatives of $\mathrm{Os}_{3}(\mathrm{CO})_{12}$, the phosphine ligands tend to occupy equatorial sites trans to a metal-metal bond on adjacent metal atoms, structure B in Scheme 2 [22b].

In this reaction a PBu_{3}^{t} ligand is released by $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$. It is possible that compound $\mathbf{1 4}$ was formed directly by the
reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ with PBu_{3}^{t}, and we have confirmed independently that compound $\mathbf{1 4}$ is obtained in good yield (75%) by this direct reaction. The reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{NCMe})_{2}$ with $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ was performed at $0^{\circ} \mathrm{C}$ in order to minimize the formation of 14.

When solutions of $\mathbf{1 0}$ were exposed to hydrogen (1 atm) at $0^{\circ} \mathrm{C}$, two products were formed by the sequential addition of two equivalents of hydrogen to $\mathbf{1 0}$. The first was a dihydrido complex $\quad \mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{2} \quad(11)$, formed in 93% yield within 10 min . The molecular structure of $\mathbf{1 1}$ was established crystallographically. The crystal contains two complete formula equivalents of the molecule in the asymmetric unit. Both molecules are structurally similar. An ORTEP diagram of one of these (molecule 1) is shown in Fig. 4. The complex contains five metal atoms. One of the platinum atoms $\operatorname{Pt}(1)[\operatorname{Pt}(4)$ in molecule 2] bridges an $\mathrm{Os}-\mathrm{Os}$ edge of a tetrahedral PtOs_{3} group of metal atoms. The cluster of $\mathbf{1 1}$ was formed by cleaving one of the $\mathrm{Pt}-\mathrm{Os}$ bonds in the cluster of $\mathbf{1 0}$. This $\mathrm{Pt}-\mathrm{Os}$ distance was increased to over $4.00 \AA, \operatorname{Os}(1) \cdots \operatorname{Pt}(1)$ $=4.057(1) \AA$ [4.011(1) \AA molecule 2]. Compound 11 contains two hydrido ligands. Both hydrido ligands were located structurally, but they were refined by using geometric restraints. One of these, $\mathrm{H}(1)$, bridges the Os-Os bond, $\mathrm{Os}(1)-\mathrm{Os}(3)$. As expected, hydride-bridged bond is significantly longer, $\operatorname{Os}(1)-\mathrm{Os}(3)=2.9217(6) \AA$, than the other two Os-Os bonds, $\operatorname{Os}(1)-\mathrm{Os}(2)=2.7757(6) \AA$, $\quad \mathrm{Os}(2)-$ $\mathrm{Os}(3)=2.7104(6) \AA$ [20]. The other hydride, $\mathrm{H}(2)$, bridges

Fig. 3. ORTEP diagram of the molecular structure of $\mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mathbf{1 4})$ showing 30% thermal probability thermal ellipsoids. Selected bond distances (in \AA) are as follows: $\mathrm{Os}(1)-\mathrm{Os}(2)=2.9732(5), \mathrm{Os}(1)-\mathrm{Os}(3)=2.9361(6), \mathrm{Os}(2)-\mathrm{Os}(3)=2.9325(6), \mathrm{Os}(1)-\mathrm{P}(1)=2.473(2)$, $\mathrm{Os}(2)-\mathrm{P}(2)=2.480(3)$.

A

B

C

D

Scheme 2.

Fig. 4. ORTEP diagram of the molecular structure of $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}$ $\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{2}, \mathbf{1 1}$ showing 70% thermal probability thermal ellipsoids. Selected bond distances (in \AA) are as follows: (molecule 1) $\operatorname{Os}(1) \cdots \mathrm{Pt}(1)=$ $4.057(1), \mathrm{Pt}(1)-\mathrm{Os}(2)=2.8339(6), \mathrm{Pt}(1)-\mathrm{Os}(3)=2.7353(6), \mathrm{Pt}(1)-\mathrm{Os}(2)=$ $2.8339(7), \operatorname{Pt}(2)-\mathrm{Os}(1)=2.8821(6), \mathrm{Pt}(2)-\mathrm{Os}(2)=2.8350(7), \mathrm{Pt}(2)-\mathrm{Os}(3)=$ $2.8093(6), \mathrm{Pt}(2)-\mathrm{H}(2)=1.76(2), \mathrm{Os}(1)-\mathrm{Os}(2)=2.7757(6), \mathrm{Os}(1)-\mathrm{Os}(3)=$ $2.9217(6), \quad \mathrm{Os}(1)-\mathrm{H}(1)=1.74(2), \quad \mathrm{Os}(1)-\mathrm{H}(2)=1.75(2), \quad \mathrm{Os}(2)-\mathrm{Os}(3)=$ $2.7104(6), \quad \mathrm{Os}(3)-\mathrm{H}(1)=1.75(2), \quad \mathrm{Pt}(1)-\mathrm{P}(1)=2.298(3), \quad \mathrm{Pt}(2)-\mathrm{P}(2)=$ 2.403(3); (molecule 2) $\mathrm{Os}(4) \cdots \operatorname{Pt}(3)=4.011(1), \mathrm{Pt}(3)-\mathrm{Os}(6)=2.7521(6)$, $\operatorname{Pt}(3)-\mathrm{Os}(5)=2.8557(6), \operatorname{Pt}(4)-\mathrm{Os}(5)=2.8242(6), \operatorname{Pt}(1)-\mathrm{Os}(6)=2.8521(6)$, $\mathrm{Pt}(4)-\mathrm{Os}(4)=2.8642(6), \quad \mathrm{Pt}(4)-\mathrm{H}(4)=1.75(2), \quad \mathrm{Os}(4)-\mathrm{Os}(5)=2.7837(6)$, $\mathrm{Os}(4)-\mathrm{Os}(6)=2.9224(6), \quad \mathrm{Os}(4)-\mathrm{H}(3)=1.75(2), \quad \mathrm{Os}(4)-\mathrm{H}(4)=1.76(2)$, $\mathrm{Os}(5)-\mathrm{Os}(6)=2.7191(6), \quad \mathrm{Os}(6)-\mathrm{H}(3)=1.74(2), \quad \mathrm{Pt}(3)-\mathrm{P}(3)=2.304(3)$, $\mathrm{Pt}(4)-\mathrm{P}(4)=2.402(3)$.
the $\mathrm{Pt}-\mathrm{Os}$ bond $\mathrm{Pt}(2)-\mathrm{Os}(1)$, and this bond is also significantly longer, $\operatorname{Pt}(2)-\mathrm{Os}(1)=2.8821(6) \AA$, than the two unbridged $\mathrm{Pt}-\mathrm{Os}$ bonds, $\mathrm{Pt}(2)-\mathrm{Os}(2)=2.8350(7) \AA$ and $\operatorname{Pt}(2)-\mathrm{Os}(3)=2.8093(6) \AA$. The location of the hydrido ligands is further supported by the ${ }^{1} \mathrm{H}$ NMR spectrum which shows two highly-shielded resonances. The resonance at -10.49 ppm exhibits strong coupling to ${ }^{195} \mathrm{Pt}$, ${ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=559 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=11 \mathrm{~Hz}$. This resonance is assigned to the bridging hydrido ligand on the $\mathrm{Pt}(2)-\mathrm{Os}(1)$ bond. The resonance at -10.71 ppm exhibits small coupling to both platinum atoms, ${ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=23 \mathrm{~Hz},{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=25 \mathrm{~Hz}$, and is assigned to the bridging hydrido ligand on the $\mathrm{Os}(1)-\mathrm{Os}(3)$ bond. The two hydrido ligands do not exhibit mutual coupling. The two PBu_{3}^{t} groups are chemically inequivalent in the solid state structure and the ${ }^{1} \mathrm{H}$ NMR shows two t-butyl resonances at $\delta=1.34$ and 1.39. The ${ }^{31} \mathrm{P}$ NMR spectrum also shows two resonances at $\delta=112.2$ and 117.6 with appropriate one bond coupling to ${ }^{195} \mathrm{Pt},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=2787 \mathrm{~Hz},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=5579 \mathrm{~Hz}$, respectively. Compound 11 contains a total of 70 valance electrons. This is four electrons less than what would be expected for such a structure with all metal atoms having 18 electron config-
urations [19]. This deficiency can be explained by assuming that the two platinum atoms have 16 -electron configurations.

The second hydrogen addition product, the tetrahydrido complex $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{4}(\mathbf{1 2})$, was obtained in 69% yield when hydrogen was purged through the solution of $\mathbf{1 1}$ for 80 min at $0^{\circ} \mathrm{C}$. Compound $\mathbf{1 2}$ was also obtained directly from $\mathbf{1 0}$ in 63% in one step under similar conditions. Compound $\mathbf{1 2}$ was characterized by IR, ${ }^{1} \mathrm{H}$ and ${ }^{31} \mathrm{P}$ NMR, and single-crystal X-ray diffraction analyses. An ORTEP diagram of the molecular structure of $\mathbf{1 2}$ is shown in Fig. 5. The structure of $\mathbf{1 2}$ contains a triangular Os_{3} cluster with two $\mathrm{Pt}(\mathrm{CO})\left(\mathrm{PBu}_{3}^{t}\right)$ groups bridging adjacent edges of the triangle. Two Pt -Os bonds that were present in $\mathbf{1 0}$ were cleaved in the formation of $\mathbf{1 2}, \mathrm{Pt}(2) \cdots \mathrm{Os}(1)$ $=3.710(1) \AA$ and $\operatorname{Pt}(1) \cdots \mathrm{Os}(2)=3.708(1) \AA$. Compound 12 contains four bridging hydrido ligands that were located and refined crystallographically. All four hydrido ligands bridge metal-metal bonds to atom $\mathrm{Os}(3)$. Due to the usual bond lengthening effect [20], the hydrogen-bridged $\mathrm{Pt}-\mathrm{Os}$ bonds, $\mathrm{Pt}(1)-\mathrm{Os}(3)=2.8831(2) \AA, \mathrm{Pt}(2)-\mathrm{Os}(3)=2.8854(2)$ \AA, are much longer than the Pt-Os bonds without bridging hydride ligands, $\operatorname{Pt}(1)-\mathrm{Os}(3)=2.7670(2) \AA, \mathrm{Pt}(2)-\mathrm{Os}(3)=$ 2.7580 (2) \AA. Likewise, the hydride-bridged Os-Os bonds, $\mathrm{Os}(1)-\mathrm{Os}(3)=2.9349(2) \AA$ and $\mathrm{Os}(2)-\mathrm{Os}(3)=2.9197(2)$ \AA, are significantly longer than the unbridged bond $\mathrm{Os}(1)-\mathrm{Os}(2)=2.8590 \AA$. Due to second-order coupling,

Fig. 5. ORTEP diagram of the molecular structure of $\mathrm{Pt}_{2} \mathrm{Os}_{3}(\mathrm{CO})_{10}(\mathrm{P}-$ $\left.\mathrm{Bu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{4}, 12$, showing 30% thermal probability thermal ellipsoids. Selected interatomic distances (in \AA) are as follows: $\operatorname{Pt}(2) \cdots \mathrm{Os}(1)=$ $3.710(1) \AA, \operatorname{Pt}(1) \cdots \operatorname{Os}(2)=3.708(1) \AA, \quad \mathrm{Pt}(1)-\mathrm{Os}(1)=2.7670(2), \mathrm{Pt}(1)-$ $\mathrm{Os}(3)=2.8831(2), \mathrm{Pt}(1)-\mathrm{H}(1)=1.80(6), \mathrm{Pt}(2)-\mathrm{P}(2)=2.3835(10), \mathrm{Pt}(2)-$ $\mathrm{Os}(2)=2.7580(2), \mathrm{Pt}(2)-\mathrm{Os}(3)=2.8854(2), \mathrm{Pt}(2)-\mathrm{H}(2)=1.78(6), \mathrm{Os}(1)-$ $\mathrm{Os}(2)=2.8590(2), \mathrm{Os}(1)-\mathrm{Os}(3)=2.9349(2), \mathrm{Os}(1)-\mathrm{H}(1)=1.67(5), \mathrm{Os}(2)-$ $\mathrm{Os}(3)=2.9197(2), \quad \mathrm{Os}(2)-\mathrm{H}(4)=1.55(5), \quad \mathrm{Os}(3)-\mathrm{H}(1)=1.85(6), \quad \mathrm{Os}(3)-$ $\mathrm{H}(2)=1.61(6), \quad \mathrm{Os}(3)-\mathrm{H}(3)=1.82(5), \quad \mathrm{Os}(3)-\mathrm{H}(4)=1.98(5), \quad \mathrm{Pt}(1)-$ $P(1)=2.3746(10)$.
the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 2}$ shows two complex multiplets in the hydride region. These were difficult to analyze due to multiple couplings. Note: although the two phosphines are symmetry equivalent they are magnetically nonequivalent. A ${ }^{31} \mathrm{P}$ decoupled ${ }^{1} \mathrm{H}$ NMR spectrum showed two hydride resonances at -9.01 ppm and -16.65 ppm . Each was a triplet, ${ }^{2} J_{\mathrm{H}-\mathrm{H}}=2.6 \mathrm{~Hz}$, due to $\mathrm{H}-\mathrm{H}$ coupling. The resonance at -9.01 ppm was strongly coupled to platinum, ${ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=421 \mathrm{~Hz}$. This is consistent with the structure found
in the solid state. The ${ }^{31} \mathrm{P}$ NMR spectrum shows a single peak at $\delta=92.0$. Overall, this compound has a total of 72 valence electrons, which is four electrons less than expected according to the polyhedral skeletal electron pair theory for a triangle having two edge-bridging metal atoms [19].

Most interestingly, the addition of hydrogen to $\mathbf{1 0}$ is partially reversible. When solutions of $\mathbf{1 2}$ were purged with nitrogen for 10 h at $25^{\circ} \mathrm{C}$, compounds $\mathbf{1 0}$ and $\mathbf{1 1}$ were

Scheme 3.

HOMO-2, 1a

HOMO-1, 2a

HOMO, 1b

LUMO, 3a

LUMO + 1, 2 b

Fig. 6. Contour diagrams for some selected Fenske-Hall molecular orbitals for $\mathbf{1 0}$.
formed and subsequently isolated in the yields 22% and 33%, respectively. 28% of the original amount of $\mathbf{1 2}$ was recovered in this experiment. When a solution of $\mathbf{1 2}$ was heated to $35^{\circ} \mathrm{C}$ for 1 h in an NMR tube, compound 12 was converted back to $\mathbf{1 1}$ and $\mathbf{1 0}$ and molecular hydrogen was released and observed spectroscopically at 4.60 ppm . A schematic of the hydrogen addition/cluster transformation reactions reported here are shown in Scheme 3. With each addition of hydrogen, a $\mathrm{Pt}-\mathrm{Os}$ bond to one of the $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ groups is cleaved and the $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ group is shifted to an edge of the cluster.

In order to gain a deeper understanding of the hydrogen addition process and the electronic structures of $\mathbf{1 0}$ and 11, we have performed Fenske-Hall molecular orbital calculations on both compounds. Compound $\mathbf{1 0}$ possesses C_{2} symmetry. Contour diagrams of the three highest occupied molecular orbitals HOMO 1b (-7.03 eV), HOMO-1 2a $(-7.33 \mathrm{eV})$, HOMO-2 1a $(-7.63 \mathrm{eV})$ and the two lowest unoccupied molecular orbitals LUMO 3a (-4.85 eV) and LUMO $+12 \mathrm{~b}(-4.24 \mathrm{eV})$ are shown in Fig. 6. The occupied molecular orbitals clearly are dominated by metal-metal bonding in the core of trigonal bipyramidal $\mathrm{Os}_{3} \mathrm{Pt}_{2}$ cluster.

The LUMO and LUMO+1, show that these orbitals are oriented predominantly along the $\mathrm{Os}-\mathrm{Pt}$ bonds, see Fig. 6. It can be seen that a major component of the LUMO $3 a$ is concentrated on the platinum atoms and the adjacent $\mathrm{Pt}-\mathrm{Os}$ bond. Therefore, it seems most likely that the addition of hydrogen occurs at a platinum atom and may in turn induce cleavage of the proximate $\mathrm{Pt}-\mathrm{Os}$ bond as electron density fills this virtual orbital and weakens the bond.

Compound 11 possesses only C_{1} symmetry. Contour diagrams of the three highest occupied molecular orbitals HOMO 3a $(-6.75 \mathrm{eV}), \quad \mathrm{HOMO}-1 \quad 2 \mathrm{a}(-7.95 \mathrm{eV})$, HOMO-2 1a $(-8.16 \mathrm{eV})$ and the lowest unoccupied molecular orbital LUMO 4a $(-5.07 \mathrm{eV})$ are shown in Fig. 7. The HOMO 3 a is dominated by metal-metal bonding interactions across the entire core of the $\mathrm{Os}_{3} \mathrm{Pt}_{2}$ cluster. The HOMO-1 2a and HOMO-2 1a also show significant metal-metal bonding interactions. The LUMO 4a is similar to the $\mathrm{LUMO}+12 \mathrm{~b}$ in $\mathbf{1 0}$. Furthermore, it can be seen that the major components of this orbital lie along three of the Os -Pt bonds, and it is one of these bonds, either $\mathrm{Os}(2)-$ $\mathrm{Pt}(2)$ or $\mathrm{Os}(3)-\mathrm{Pt}(2)$ in 11, see Fig. 4, that is cleaved to form

Fig. 7. Four contour diagrams for some selected Fenske-Hall molecular orbitals for 11. Top right is a line structure showing the locations of the atoms in the diagrams.
the tetrahydrido cluster 12. Thus, it seems most likely that hydrogen addition occurs at the platinum atom $\operatorname{Pt}(2)$.

Although 12 was still the major product (47% yield), three new tetranuclear metal compounds $\mathrm{PtOs}_{3}(\mathrm{CO})_{10^{-}}$ $\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{2}(\mathbf{1 6}), \mathrm{PtOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{4}(\mathbf{1 7})$ and $\mathrm{PtOs}_{3}-$ $(\mathrm{CO})_{8}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{4}(\mathbf{1 8})$, were obtained in low yields, 19%, 6% and 8%, respectively, when the reaction of 10 with hydrogen at $0^{\circ} \mathrm{C}$ was performed over a period of 2.5 h . All three new compounds were characterized by a combination of IR, ${ }^{1} \mathrm{H}$ NMR and ${ }^{31} \mathrm{P}$ NMR, and single-crystal X-ray diffraction analyses.

Compound $\mathbf{1 6}$ consists of a tetrahedrally-shaped metal cluster containing one platinum and three osmium atoms. An ORTEP diagram of the molecular structure of 16 is shown in Fig. 8. The molecule contains two hydrido ligands, $\mathrm{H}(1)$ and $\mathrm{H}(2)$, that were located and refined crystallographically. Atom $\mathrm{H}(1)$ bridges the $\mathrm{Pt}(1)-\mathrm{Os}(1)$ bond and atom $\mathrm{H}(2)$ bridges the $\mathrm{Os}(2)-\mathrm{Os}(3)$ bond. As expected [20], both hydride-bridged metal-metal bonds, $\operatorname{Pt}(1)-$ $\mathrm{Os}(1)=2.8613(3) \AA$ and $\mathrm{Os}(2)-\mathrm{Os}(3)=2.7853(3) \AA$, are significantly longer than the unbridged metal-metal bonds, $\mathrm{Pt}(1)-\mathrm{Os}(2)=2.8133(3) \AA, \quad \mathrm{Pt}(1)-\mathrm{Os}(3)=2.8189(3) \AA$, $\mathrm{Os}(1)-\mathrm{Os}(3)=2.7413(3) \AA$, and $\operatorname{Pt}(1)-\mathrm{Os}(1)=2.7472(3)$ \AA. The ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 6}$ shows two highly-shielded resonances, $\delta=-7.24 \mathrm{ppm}$ and -8.14 ppm , that are attributed to the hydrido ligands. The resonance at -8.14 ppm exhibits strong coupling to ${ }^{195} \mathrm{Pt}\left({ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=573 \mathrm{~Hz}\right)$. Each osmium has three carbonyl ligands. The platinum atom

Fig. 8. An ORTEP diagram of $\mathrm{PtOs}_{3}(\mathrm{CO})_{10}\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{2}$ (16), showing 50% probability thermal ellipsoids. Selected bond distances (in \AA) are as follows: $\quad \operatorname{Pt}(1)-\mathrm{Os}(1)=2.8613(3), \quad \operatorname{Pt}(1)-\mathrm{Os}(2)=2.8133(3), \quad \mathrm{Pt}(1)-$ $\mathrm{Os}(3)=2.8189(3), \quad \mathrm{Os}(1)-\mathrm{Os}(2)=2.7472(3), \quad \mathrm{Os}(1)-\mathrm{Os}(3)=2.7413(3)$, $\mathrm{Os}(2)-\mathrm{Os}(3)=2.7853(3), \quad \mathrm{Pt}(1)-\mathrm{H}(1)=1.72(6), \quad \mathrm{Os}(1)-\mathrm{H}(1)=2.06(6)$, $\mathrm{Os}(2)-\mathrm{H}(2)=1.87(6), \mathrm{Os}(3)-\mathrm{H}(2)=1.81(6), \mathrm{Pt}(1)-\mathrm{P}(1)=2.4282(13)$.
contains one terminal carbonyl ligand and the one PBu_{3}^{t} ligand. This compound has a total of 58 valence electrons, which is two electrons less than the number expected for a tetrahedral structure of four metal atoms [19].

Compound $\mathbf{1 7}$ is structurally similar to that of $\mathbf{1 6}$, except that it contains one less CO ligand and two more hydrido ligands than 16. The presence of four hydrido ligands in 17 was confirmed by an electron impact mass spectrum which showed the parent ion at $m / z 1224$. Compound $\mathbf{1 7}$ was also obtained directly from 16 in 48% yield by reaction with hydrogen at $1 \mathrm{~atm} / 25^{\circ} \mathrm{C}$ for 1 h . Compound $\mathbf{1 7}$ was also characterized crystallographically and an ORTEP diagram of its molecular structure is shown in Fig. 9. The molecule contains a tetrahedrally-shaped PtOs_{3} cluster with four hydrido ligands; all hydrido ligands were located but only H 2 and H 3 were refined crystallographically. In the solid state structure, two of the hydrido ligands bridge Os-Os bonds, one bridges one of the $\mathrm{Pt}-\mathrm{Os}$ bonds, $\mathrm{Pt}(1)-\mathrm{Os}(1)$, and one is terminally coordinated to the platinum atom $\operatorname{Pt}(1)$ and is positioned opposite to the $\mathrm{Pt}(1)-\mathrm{Os}(1)$ bond. The hydride-bridged $\mathrm{Pt}(1)-\mathrm{Os}(1)$ bond is much longer, $2.8766(4) \AA$, than the unbridged ones, $\operatorname{Pt}(1)-\mathrm{Os}(2)=$ $2.7283(4) \AA, \quad \operatorname{Pt}(1)-\mathrm{Os}(3)=2.7490(3) \AA . \quad$ The hydridebridged $\mathrm{Os}-\mathrm{Os}$ bond, $\mathrm{Os}(1)-\mathrm{Os}(3)=2.9302(4) \AA$, is also much longer than the other two Os-Os bonds, Os(1)$\mathrm{Os}(2)=2.8023(3) \AA$ and $\mathrm{Os}(2)-\mathrm{Os}(3)=2.7898(4) \AA$. Curiously, however, one of latter two bonds, $\mathrm{Os}(2)-\mathrm{Os}(3)$, also contains the bridging hydrido ligand $\mathrm{H}(4)$. There is no obvious explanation for the shortness of this bond [20].

Fig. 9. An ORTEP diagram of $\mathrm{PtOs}_{3}(\mathrm{CO})_{9}\left(\mathrm{PBu}_{3}^{t}\right)(\mu-\mathrm{H})_{4}$ (17), showing 50% probability thermal ellipsoids. Selected bond distances (in \AA) are as follows: $\quad \operatorname{Pt}(1)-\mathrm{P}(1)=2.3500(13), \quad \mathrm{Pt}(1)-\mathrm{H}(1)=1.92(8), \quad \mathrm{Pt}(1)-\mathrm{H}(2)=$ $1.79(12), \operatorname{Pt}(1)-\mathrm{Os}(1)=2.8766(4), \operatorname{Pt}(1)-\mathrm{Os}(2)=2.7283(4), \operatorname{Pt}(1)-\mathrm{Os}(3)=$ $2.7490(3), \mathrm{Os}(1)-\mathrm{H}(1)=1.70(7), \mathrm{Os}(1)-\mathrm{H}(3)=1.70(11), \mathrm{Os}(1)-\mathrm{Os}(2)=$ $2.8023(3), \mathrm{Os}(1)-\mathrm{Os}(3)=2.9302(4), \mathrm{Os}(2)-\mathrm{Os}(3)=2.7898(4), \mathrm{Os}(2)-\mathrm{H}(4)=$ $1.86(7), \mathrm{Os}(3)-\mathrm{H}(3)=1.81(11), \mathrm{Os}(3)-\mathrm{H}(4)=1.67(8)$.

In the solid state, the four hydrido ligands in $\mathbf{1 7}$ are inequivalent. Therefore, one would expect to see four separate hydride resonances in the ${ }^{1} \mathrm{H}$ NMR spectrum. However, only two resonances of equal intensity were observed in the hydride region of the spectrum, $-10.72 \mathrm{ppm}\left(\mathrm{d}, 2 \mathrm{H}\right.$, hydride, $\left.{ }^{1} J_{\mathrm{Pt}-\mathrm{H}}=759 \mathrm{~Hz}\right)$ and -16.62 ppm (d, 2 H , hydride, ${ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=14 \mathrm{~Hz},{ }^{3} J_{\mathrm{P}-\mathrm{H}}=$ 1.5 Hz). Assuming the possibility of a dynamical averaging process, a ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 7}$ was recorded at $-90^{\circ} \mathrm{C}$, the lowest temperature that we could obtain, to try to obtain evidence for this. At $-90^{\circ} \mathrm{C}$, the hydride resonances were very broad. This is consistent with a very rapid dynamical averaging process; however, activation parameters can not be calculated in the absence of a ratelimiting low temperature spectrum.

A very simple exchange mechanism is proposed that allows for the interchange of the two platinum-coordinated hydrido ligands, see Scheme 4. The terminal ligand $\mathrm{H}(2)$ on Pt is shifted to an edge-bridging position across the $\mathrm{Pt}(1)-\mathrm{Os}(2)$ bond and simultaneously the bridging ligand $\mathrm{H}(1)$ is shifted to a terminal position on $\operatorname{Pt}(1)$ by breaking the $\mathrm{Os}(1)-\mathrm{H}(1)$ bond to form 17b. This exchange process also leads to an exchange of the environments of the hydrido ligands $\mathrm{H}(3)$ and $\mathrm{H}(4)$ that are coordinated to the two osmium atoms. Compound 17 has a total of 58 valence electrons, which is two electrons less than the number expected for a tetrahedron of four metal atoms.

Compound $\mathbf{1 8}$ is a PBu_{3}^{t} derivative of $\mathbf{1 7}$, and it was also obtained in 41% yield directly from 17 by reaction with PBu_{3}^{t} at room temperature. An ORTEP diagram of the molecular structure of $\mathbf{1 8}$ is shown in Fig. 10. The molecular structure of $\mathbf{1 8}$ consists of a tetrahedral PtOs_{3} cluster with two PBu_{3}^{t} ligands. As in 17 , one of the PBu_{3}^{t} ligands is coordinated to the platinum atom. The other one is coordinated to an osmium atom, Os(3). Compound $\mathbf{1 8}$ contains a minor component of disorder (15%) in the solid state. Only the metal atoms of the disordered component were located and refined. As a result, the hydrido ligands of the major component were not observed in the analysis. However, on the basis of a comparison of the structures of $\mathbf{1 7}$ and 18, it is believed that the hydrido ligands occupy positions in $\mathbf{1 8}$ that are similar to those in $\mathbf{1 7}$, that is, there is a terminal hydrido ligand on $\operatorname{Pt}(1)$, trans to the $\operatorname{Pt}(1)-$

17a

17b

Scheme 4.

Fig. 10. An ORTEP diagram of $\mathrm{PtOs}_{3}(\mathrm{CO})_{8}\left(\mathrm{PBu}_{3}^{t}\right)_{2}(\mu-\mathrm{H})_{4}$ (18), showing 50% probability thermal ellipsoids. Selected bond distances (in A.) are: $\mathrm{Pt}(1)-\mathrm{Os}(1)=2.8775(13), \quad \operatorname{Pt}(1)-\mathrm{Os}(2)=2.7496(12), \quad \operatorname{Pt}(1)-\mathrm{Os}(3)=$ $2.7697(9), \operatorname{Os}(1)-\mathrm{Os}(2)=2.8181(11), \quad \mathrm{Os}(1)-\mathrm{Os}(3)=2.9712(10), \quad \mathrm{Os}(2)-$ $\mathrm{Os}(3)=2.7672(8), \mathrm{Pt}(1)-\mathrm{P}(1)=2.3260(16), \mathrm{Os}(3)-\mathrm{P}(2)=2.4390(13)$.
$\mathrm{Os}(1)$ bond and also a bridging hydrido ligand across the $\mathrm{Pt}(1)-\mathrm{Os}(1)$ bond. As in 17, the $\mathrm{Pt}(1)-\mathrm{Os}(1)$ bond in 18, $2.8775(13) \AA$, is significantly longer than the other two $\mathrm{Pt}-\mathrm{Os}$ bonds, $\quad \mathrm{Pt}(1)-\mathrm{Os}(2)=2.7496(12) \AA, \quad \mathrm{Pt}(1)-$ $\mathrm{Os}(3)=2.7697(9) \AA$. It is believed that the two remaining hydrido ligands bridge the $\mathrm{Os}(1)-\mathrm{Os}(3)$ and $\mathrm{Os}(2)-\mathrm{Os}(3)$ bonds as in $\mathbf{1 7}$. This is supported by the very long length of the $\operatorname{Os}(1)-\operatorname{Os}(3)$ bond, $2.9712(10) \AA$. As in 17, the $\mathrm{Os}(2)-\mathrm{Os}(3)$ bond is inexplicably short, $2.7672(8) \mathrm{A}$. As in 17, only two resonances of equal intensity were observed for the hydrido ligands in the ${ }^{1} \mathrm{H}$ NMR spectrum of $\mathbf{1 8}$, $-10.18 \mathrm{ppm} \quad\left({ }^{2} J_{\mathrm{P}-\mathrm{H}}=9.7 \mathrm{~Hz}, \quad{ }^{3} J_{\mathrm{P}-\mathrm{H}}=1.5 \mathrm{~Hz}, \quad{ }^{1} J_{\mathrm{P} t-\mathrm{H}}=\right.$ $755 \mathrm{~Hz})$ and $-13.96 \mathrm{ppm} \quad\left({ }^{2} J_{\mathrm{P}-\mathrm{H}}=6.4 \mathrm{~Hz}, \quad{ }^{2} J_{\mathrm{Pt}-\mathrm{H}}=\right.$ 13 Hz), one exhibits large coupling to ${ }^{195} \mathrm{Pt}$ and the other does not. The ${ }^{31} \mathrm{P}$ NMR spectrum shows two doublets, one at 81.5 ppm and another at 124.2 ppm which are mutually coupled, ${ }^{3} J_{\mathrm{P}-\mathrm{P}}=30 \mathrm{~Hz}$. The resonance at 124.2 ppm also exhibits strong coupling to ${ }^{195} \mathrm{Pt},{ }^{1} J_{\mathrm{Pt}-\mathrm{P}}=3370 \mathrm{~Hz}$, and is assigned to the phosphorus atom bonded directly to the platinum atom, $\mathrm{P}(1)$ in Fig. 10. In the ${ }^{1} \mathrm{H}$ coupled ${ }^{31} \mathrm{P}$ NMR spectrum, each phosphorus resonance was observed as a doublet of triplets due to coupling from hydride ligands, indicating there are two sets of two equivalent hydrido ligands in this cluster. Compound $\mathbf{1 8}$ has a total of 58 valence electrons, two electrons less than the number expected for a tetrahedral cluster of four metal atoms [19].

Scheme 5 shows the tetranuclear products 16-18 and their relationships. Compound 16 appears to be the first one from by degradation of the pentanuclear clusters in

Scheme 5.
the course of their reactions with hydrogen. This is consistent with the observation of $\mathrm{Pt}-\mathrm{Os}$ bond cleavage processes that occur in the formation of $\mathbf{1 1}$ and $\mathbf{1 2}$ when hydrogen is added to $\mathbf{1 0}$.

4. Summary

We have shown that the unsaturated bimetallic cluster complex 10 is formed by the reaction of $\mathrm{Os}_{3}(\mathrm{CO})_{10^{-}}$ $(\mathrm{NCMe})_{2}$ with $\operatorname{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$. Compound $\mathbf{1 0}$ contains two triply bridging $\mathrm{Pt}\left(\mathrm{PBu}_{3}^{t}\right)$ groups giving an overall trigonal bipyramidal shape to the cluster of five metal atoms. Compound $\mathbf{1 0}$ adds hydrogen under mild conditions, e.g., $0^{\circ} \mathrm{C}$, by a series of $\mathrm{Pt}-\mathrm{Os}$ bond cleavage processes to yield the di- and tetrahydrido compounds $\mathbf{1 1}$ and 12. These additions are partially reversible. On longer exposure to hydrogen, the clusters begin to degrade by loss of a platinum phosphine group. The activation of hydrogen is an important first step in most catalytic hydrogenation reactions. Bi- and multimetallic cluster complexes have been shown to be precursors for the efficient preparation of bi- and multimetallic nanoparticles for use in catalytic hydrogenation reactions [23].

Acknowledgements

This research was supported by the Office of Basic Energy Sciences of the US Department of Energy under Grant No. DE-FG02-00ER14980, and the USC NanoCenter. We thank STREM for donation of a sample of $\operatorname{Pt}\left(\mathrm{PBu}_{3}^{t}\right)_{2}$ and Dr. Perry J. Pellechia for assistance with the NMR measurements.

Appendix A. Supplementary data

The crystallographic data has been deposited as follows: CCDC 641569 for 12, CCDC 641570 for $\mathbf{1 4}$, CCDC 641571 for 10, CCDC 641572 for 11, CCDC 655100 for 13, CCDC 655101 for 16, CCDC 655102 for 17, CCDC 655108 for 18. These data can be obtained free of charge via http:// www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: (+44) 1223-336-033; or email: deposit@ccdc.cam.ac.uk. Supplementary data associated with this article can be found, in the online version, at doi:10.1016/j.jorganchem.2007.08.006.

References

[1] (a) R.D. Adams, B. Captain, W. Fu, M.B. Hall, J. Manson, M.D. Smith, C.E. Webster, J. Am. Chem. Soc. 126 (2004) 5253-5267; (b) R.D. Adams, B. Captain, W. Fu, M.D. Smith, J. Am. Chem. Soc. 124 (2002) 5628-5629.
[2] R.D. Adams, B. Captain, W. Fu, M.D. Smith, L. Zhu, Inorg. Chem. 45 (2006) 430-436.
[3] (a) R.D. Adams, B. Captain, P.J. Pellechia, J.L. Smith Jr., Inorg. Chem. 43 (2004) 2695-2702;
(b) R.D. Adams, B. Captain, M.B. Hall, J.L. Smith Jr., C.E. Webster, J. Am. Chem. Soc. 127 (2005) 1007-1014;
(c) R.D. Adams, B. Captain, L. Zhu, J. Cluster Sci. 17 (2006) 87-95.
[4] R.D. Adams, B. Captain, Mark D. Smith, C. Beddie, M.B. Hall, J. Am. Chem. Soc. 129 (2007) 5981-5991.
[5] (a) R.D. Adams, B. Captain, C. Beddie, M.B. Hall, J. Am. Chem. Soc. 129 (2007) 986-1000;
(b) R.D. Adams, B. Captain, Angew. Chem., Int. Ed. 44 (2005) 25312533.
[6] (a) G.W. Crabtree, M.S. Dresselhaus, M.V. Buchanan, Phys. Today (2004) 39-44;
(b) J.M. Ogden, Phys. Today 55 (2002) 69-75;
(c) P.P. Edwards, V.L. Kuznetsov, W.I.F. David, Phil Trans. R. Soc. A 365 (2007) 1043-1056.
[7] (a) L. Schlapbach, A. Züttel, Nature 414 (2001) 353;
(b) N.L. Rosi, J. Eckert, M. Eddaoudi, D.T. Vodak, M. O'Keerre, O.M. Yaghi, Science 300 (2003) 1127;
(c) X. Zhao, B. Xiao, A.J. Fletcher, K.M. Thomas, D. Bradshaw, M.J. Rosseinsky, Science 306 (2004) 1012.
[8] (a) J.N. Armor, Catal. Lett. 101 (2005) 131-135;
(b) J.M. Thomas, R. Raja, B.F.G. Johnson, S. Hermans, M.D. Jones, T. Khimyak, Ind. Eng. Chem. Res. 42 (2003) 1563-1570.
[9] (a) G.J. Kubas, Metal Dihydrogen and σ-Bond Complexes, Kluwer Academic/Plenum Publishers, New York, 2001;
(b) D.M. Heinekey, A. Lledos, J.M. Lluch, Chem. Soc. Rev. 33 (2004) 175-182.
[10] (a) P.J. Dyson, S.J. McIndoe, Angew. Chem., Int. Ed. 44 (2005) 5772-5774;
(b) S.K. Brayshaw, M.J. Ingleson, J.C. Green, J.S. McIndoe, P.R. Raithby, G. Kociok-Köhn, A.S. Weller, J. Am. Chem. Soc. 128 (2006) 6247-6263;
(c) R.D. Adams, B. Captain, M.D. Hall, C. Beddie, M.B. Hall, J. Am. Chem. Soc. 129 (2007) 5981-5991.
[11] R.D. Adams, B. Captain, L. Zhu, J. Am. Chem. Soc. 129 (2007) 2454-2455.
[12] P.A. Dawson, B.F.G. Johnson, J. Lewis, J. Puga, P. Raithby, M.J. Rosales, J. Chem. Soc., Dalton Trans. (1982) 233.
[13] R.D. Adams, B. Captain, W. Fu, M.D. Smith, L. Zhu, Inorg. Chem. 45 (2006) 430.
[14] saint+ Version 6.2a. Bruker Analytical X-ray System, Inc., Madison, WI, USA, 2001.
[15] G.M. Sheldrick, shelxtl Version 6.1, Bruker Analytical X-ray Systems, Inc., Madison, WI, USA, 1997.
[16] M.B. Hall, R.F. Fenske, Inorg. Chem. 11 (1972) 768.
[17] J. Manson, C.E. Webster, M.B. Hall, JIMP, development version 0.1.v117 (built for Windows PC and Redhat Linux); Department of Chemistry, Texas A\& M University: College Station, TX; <http:// www.chem.tamu.edu/jimp/> (accessed July 2004).
[18] морlot2 for orbital and density plots from linear combinations of Slater or Gaussian type orbitals, version 2.0; D.L. Lichtenberger, Department of Chemistry, University of Arizona: Tucson, AZ, 1993.
[19] D.M.P. Mingos, Accts. Chem. Res. 17 (1984) 311.
[20] (a) R. Bau, M.H. Drabnis, Inorg. Chim. Acta 259 (1997) 27-50;
(b) R.G. Teller, R. Bau, Struct. Bond. 41 (1981) 1.
[21] (a) C.D. Rithner, C.H. Bushweller, J. Am. Chem. Soc. 107 (1985) 7823;
(b) C.H. Bushweller, J.A. Brunelle, J. Am. Chem. Soc. 95 (1973) 5949.
[22] (a) M.I. Bruce, M.J. Liddell, C.A. Hughes, J.M. Patrick, B.W. Skelton, A.H. White, J. Organomet. Chem. 347 (1988) 181;
(b) W.K. Leong, Y. Liu, J. Organomet. Chem. 584 (1999) 174;
(c) A.J. Deeming, in: E.W. Abel, F.G.A. Stone, G. Wilkinson (Eds.), Comprehensive Organometallic Chemistry II, vol. 7, Elsevier, Oxford, 1995 (Chapter 12).
[23] (a) J.M. Thomas, B.F.G. Johnson, R. Raja, G. Sankar, P.A. Midgley, Accts. Chem. Res. 36 (2003) 20-30;
(b) A.B. Hungria, R. Raja, R.D. Adams, B. Captain, J.M. Thomas, P.A. Midgley, V. Golvenko, B.F.G. Johnson, Angew. Chem., Int. Ed. 45 (2006) 4782-4785;
(c) O. Alexeev, B.C. Gates, Ind. Eng. Chem. Res. 42 (2003) 15711587.

[^0]: * Corresponding author.

 E-mail address: Adams@mail.chem.sc.edu (R.D. Adams).

